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ABSTRACT

Practical imaging systems form images with spatially-varying blur, making it challenging to deblur them and
recover critical scene features. To address such systems, we introduce SeidelNet, a deep-learning approach for
spatially-varying deblurring which learns to invert an imaging system’s blurring process from a single calibration
image. SeidelNet leverages the rotational symmetry present in most imaging systems by incorporating the
primary Seidel aberration coefficients into the deblurring pipeline. We train and test SeidelNet on synthetically
blurred images from the CARE fluorescence microscopy dataset, and find that, despite relatively few parameters,
SeidelNet outperforms both analytical methods as well as a standard deblurring neural network.

Keywords: Deep Learning, Image Deblurring, Computational Imaging, Aberration Estimation, Aberration
Correction, Point Spread Function, Deconvolution

1. INTRODUCTION

Whether miniature microscopes, large-scale space telescopes, or cell phone cameras, many practical imaging
systems are subject to imperfections that are infeasible—and in some cases impossible—to fix with optical design
and engineering. Size and cost constraints, among others, may force one to turn instead to digital solutions,
namely image deblurring. It is no surprise, then, that there exists a plethora of deblurring techniques. What
is more surprising is that existing literature has largely been polarized—either deblurring is done analytically
by inverting a physically-informed image formation model1–9 or it is done purely phenomenologically, primarily
with deep learning.10–12 Thus one must trade off slow, calibration-heavy, but robust methods with fast, accurate
methods which require large datasets and are potentially unreliable at test time.

Only more recently do we see entries emerge which exist in between.13–17 However these techniques are
often specialized to a particular system and/or still require nontrivial calibration. In this work, we develop
a general-purpose deep learning strategy called SeidelNet which incorporates the 5 primary Seidel aberration
coefficients in order to perform fast, accurate, and robust deblurring with only a single calibration image per
imaging system. The key idea behind our hybrid model is that most imaging systems are rotationally symmetric
which means their system aberrations can be parameterized with the Seidel polynomial.18,19 We learn the 5
primary coefficients of the Seidel polynomial from a single image of a few randomly scattered point sources and
use them to obtain a system-specific, aberration-aware deblurring neural network.

To test SeidelNet we first create a dataset by applying radially-varying blur to images from the CARE
dataset10,20 using the linear revolution-invariant forward model.21 Then, we build and train a series of different
models, each of which takes both a blurry image and a corresponding set of Seidel aberration coefficients as input,
and outputs a deblurred estimate of the perfect image. Overall, we show that the models which incorporate the
Seidel coefficients outperform their unconditioned counterparts as well as standard analytical methods.
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Figure 1: Comparing the LRI Deblurring pipelines. The original, pictured in blue, requires an additional
step of generating a stack of PSFs. The SeidelNet pipeline, on the other hand, can directly utilize the Seidel
Coefficients.

2. BACKGROUND

2.1 Linear revolution-invariant deblurring

The blur of an aberrated imaging system, in general, varies across the field-of-view. Systems for which this
field-dependence is small may be modeled as linear, shift-invariant (LSI). Their images are accurately deblurred
via deconvolution with a single point spread function (PSF).1–3 However, systems which do not have negligible
field variance but are rotationally symmetric are more appropriate modeled as linear, revolution-invariant or
LRI; the PSFs vary, but only radially (see Fig. 1 Radial line of PSFs). The images from such systems require
LRI deblurring which uses many PSFs—one at every radius of the FoV—and is N times slower where N is the
image sidelength in pixels.21 However, it is possible to obtain these needed PSFs by first fitting a system’s Seidel
aberration coefficients to a single calibration image of randomly scattered point sources, and then generating
the necessary PSFs (see Fig. 1 original pipeline). Yet such a procedure is incredibly inefficient: it expands 5
numbers to N PSFs which is a total of N3 pixels. In this paper we propose to instead directly use the Seidel
aberration coefficients when performing image deblurring. But before we introduce our technique, SeidelNet,
we will provide a brief background on Seidel aberration coefficients. A more comprehensive guide may be found
elsewhere.18,19

2.2 Seidel aberration coefficients

The aberrations of a linear imaging system are often characterized by the wavefront error function w whose
values correspond to the optical path length difference between the system’s wavefront and an ideal spherical
wavefront at the exit pupil of the system.18,22 For rotationally symmetric systems, one can expand w as a infinite
power series whose third-order coefficients are the 5 primary Seidel aberration coefficients.18,19 Each coefficient
corresponds to a well-known type of aberration: sphere, coma, astigmatism, field curvature, and distortion. Using
the Seidel calibration procedure described in21 (see Fig. 1), it is possible to obtain the Seidel coefficients from
a single calibration image of a few randomly scattered point sources. Seidel coefficients provide an incredibly
compact summary—just 5 numbers—of the system aberrations. It is then natural to conclude that they can
enhance a deblurring network when used as co-input with the blurry measurement, which we describe as follows.

3. METHODS

We implement two strategies for incorporating Seidel coefficients into deep deblurring—Seidel U-Net and Seidel
HyperU-Net. As a baseline we use a standard U-Net.10,11,23
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Figure 2: SeidelNet Architectures. a) Seidel U-Net takes in the blurry measurement and Seidel coefficients
at every convolutional block. b) Seidel HyperU-Net first takes in the Seidel coefficients and produces a deblurring
U-Net, which then takes in the blurry measurement.

3.0.1 Seidel U-Net

Seidel U-Net utilizes the classic U-Net architecture but takes in Seidel coefficients in addition to the blurry image
as input (see Fig. 2a). To incorporate the Seidel coefficients, we jointly optimize a small three-layer multilayer
perceptron (MLP) alongside the usual U-Net. This MLP lifts the Seidel coefficients into a low-dimensional
image space, which is appended to the convolutional blocks of the U-Net along the channel dimension. To
ensure the MLP output matches the correpsonding convolutional block dimension, we apply a combination of
upscale interpolations and small convolutional layers. To compensate for these extra parameters of the MLP, we
reduce the kernel size to 3x3, resulting in a model of ∼ 54.4 million parameters compared to the ∼ 92.7 million
parameters of the baseline U-Net.

3.0.2 Seidel HyperU-Net

Seidel HyperU-Net is an interpretable and parameter-efficient alternative to Seidel U-Net. Seidel HyperU-Net
builds on Hypernetworks,24 a model that tasks a “hypernetwork” with predicting the weights of a “primary”
network. In our case, the hypernetwork takes in a set of Seidel coefficients as input and maps them to the
convolutional kernels of a scaled-down U-Net. This U-Net then takes in a blurry image as input and outputs a
deblurred estimate (see Fig. 2b). In essence, each Seidel coefficient set essentially indexes a deblurring network
specifically optimized to handle the aberrations associated with those coefficients. We implement the hypernet-
work with a shared MLP and a series of learned embeddings for each layer of Seidel HyperU-Net. The output
of this MLP is then multiplied with a learned matrix and reshaped to be a convolutional kernel.

3.1 Dataset

To produce a training dataset for SeidelNet, we synthetically generate blurred input images from the CARE
fluorescence microscopy dataset10,20 using the linear revolution-invariant forward model with randomly chosen
sets of Seidel coefficients.21 Thus, each training pair consists of a two-part input, the LRI-blurred image and
its corresponding five primary Seidel coefficients. The unblurred ground truth image from the CARE dataset
supervises the model output.

For training, we must sample Seidel coefficients which adequately cover realistic imaging systems—we find
that the range 0 − 3 for each coefficient is sufficient. We elect to combine two random sampling grids on IR5.
The first is a uniform distribution across Seidel coefficients between 0 and 3. The second is a nonrandom,
evenly-spaced grid across the same range of coefficients with additive zero-mean Gaussian noise at each grid
point.



3.2 Implementation

We implement our deblur models using the PyTorch framework in Python. The U-Net models are modified
from an open-source implementation,25 and the HyperU-Net model incorporates elements from an open-source
Hypernetwork implementation.26 All models are trained on the same training set and tested on the same test
set.

4. RESULTS AND DISCUSSION

Below we compare the results of the aforementioned deep learning models as well as the analytical deblurring
algorithms for the LSI and LRI models. The models’ average mean squared errors against the ground truth are
presented in Table 1 and image outputs displayed in Fig. 3. All results were performed on the same test set of
images and Seidel coefficients not present in the training set.

Table 1: Quantitative results of deblur models on test dataset.

Model Number of Parameters MSE PSNR (avg) Runtime* (s)

LSI 262K 0.01022 69.307 —

LRI 134M 0.00322 75.082 63.34

U-Net 92.7M 0.00800 70.543 0.302

Seidel U-Net 54.4M 0.00626 71.305 0.234

HyperU-Net 6.9M 0.00583 71.716 0.180

4.1 Quantitative Results

As shown in Table 1 the SeidelNet models, Seidel U-Net and Seidel HyperU-Net, both outperform the baseline
U-Net despite having fewer parameters. Notably, HyperU-Net has the best performance of all deep learning
models while being roughly 13 times smaller than the baseline U-Net and about 8 times smaller than Seidel
U-Net. This parameter efficiency also means that Seidel HyperU-Net is much faster to evaluate than the other
models. Though not shown here, the HyperU-Net also has the smallest loss on the training set, which indicates
that its superior performance is not due to the larger models overfitting (by virtue of their size). Indeed, it
appears that access to Seidel coefficients in tandem with the unique structure of the Seidel HyperU-Net allows
deblurring to be learned from data efficiently and effectively.

If we additionally consider the analytical methods, we see that LRI deblurring has the best performance of
all methods; however, this is in larger part because the LRI model was used to blur the images in the dataset.
Moreover, since it does not require learning, LRI deblurring is not biased to any particular training set. However,
it remains prohibitively slow, suggesting that the SeidelNet models are the practical frontrunners. Finally, as
expected, we see that LSI deconvolution performs the worst—unlike the other models, it only has access to
information about the center PSF, and does not accurately model the spatially varying blur.

4.2 Qualitative Results

In Fig. 3 we see that the various deblur methods perform in accordance with the quantitative results. The largest
difference between the methods occurs near the edges and corners of the images, where the blur becomes the
worst. Amongst the learning strategies, the two SeidelNet models provide the sharpest deblur in the corners
and edges, resolving small features with high contrast (see the top right section of images in the second row for
example). Meanwhile, the baseline U-Net tends to create blurrier, lower contrast reconstructions near the edges
and corners. For the analytical models, LRI also performs well in the corners but suffers from some artifacts
due to image cropping; LSI on the other hand only deblurs the center but fails to deblur the edges due to its
inadequate modeling.

*Amortized inference time on GTX 1080ti GPU. We omit LSI runtime since we did not implement this for GPU.



Figure 3: Comparison of model performance on the test setModels are stratified by column. Quantitative
performance metrics for the same test set are available in Table 1.

4.3 Discussion

SeidelNet offers a path toward a new regime of general purpose image deblurring which is as easy to calibrate
as standard deconvolution and shares the ever-impressive performance of deep learning models. It is our hope
that SeidelNet and the research which builds upon it will form a new standard toolkit for all users of imaging
systems, from microscopes to space telescopes. We intend to further test and improve SeidelNet, particularly
with real images taken with a wide variety of imaging systems.
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